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Abstract

Transportation cost accounts for a significant portion among the total cost of photovoltaics (PV) recycling. The
transportation cost can be significantly reduced with a well-planned vehicle routing. A generic mathematical
framework was developed to generate the optimal distribution scheme for transporting retired PV. A static and a
dynamic recycling algorithms were created as the optimization tool in the framework. As for the output, the
framework generates the optimal distribution scheme, the transportation cost of the optimal scheme, as well as the
amount of End-of-life PV that each PV recycling center receives. A case study was included to test the effectiveness
of the proposed framework. The optimal costs generated by two algorithms were compared with the baseline cost.
As a result, the cost can be reduced by 53% when compared with the baseline. In addition, the static algorithm can
obtain a result with decent accuracy and low computational cost.
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Introduction
In 2015, 50.6 GW new solar photovoltaics (PV) were in-
stalled worldwide. A 613 GW grid-connected solar power
was forecasted by the end of 2019 all over the world [1].
The amount of PV installed in the United States in 2016
achieved 14.7 GW, doubling the amount of the year 2015.
With the 39% renewable electric occupancy, solar energy
has become the most used renewable electric energy in
the United States in 2016. As the largest installer, in 2016,
PV installation in California accounted for 35% of the
United States. The cumulative PV installation in CA has
researched 17 GW [2].
Due to containing toxic and value materials, all on site

PVs need to be recycled after they retire in about 25 yr.
[3]. However, recycling is less economical than disposing
at present. Cost effectiveness has been emphasized as
the greatest challenge while performing PV recycling [4].
Reducing the transportation cost is an effective way to

reduce the cost of PV recycling. The transportation cost
has been concluded as the leading cost while simulating
the PV recycling process in Germany [5]. While planning
EoL PV material recovery in New York, the transportation
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cost was also concluded as an indispensable parameter in
the recycling framework [6]. The proportion of the trans-
portation cost among the total cost was also emphasized
while performing a financial analysis of end-of-life (EoL)
PV recycling in Italy [7]. Therefore, in order to make the
recycling affordable and profitable, the transportation cost
needs to be reduced [8].
Implementing mathematical optimization is an effective

way to reduce the transportation cost. Classical mathemat-
ical optimization models of the vehicle routing for the facil-
ity location decision has been summarized [9]. A waste
collection optimization was performed by minimizing the
route distance. By optimizing, the average waste collection
efficiency was improved by 37%, and the fuel cost was
reduced by 48% [10]. An optimization on solid waste col-
lection and transport was performed by using the ArcGIS
Network Analyst tool. As a result, a 48% gas saving was
achieved on the optimal transport scenario [11].
As for the optimization algorithm, Mixed Integer

Linear Programming (MILP) and Greedy Algorithm
(GA) have been used broadly on mathematical models.
In order to solve a EoL vehicle recovery problem in
Turkey economically, a MILP optimization model was
developed to minimize the costs on opening facilities,
recovery processes, and transportation [12]. MILP was
also applied on vehicle routing problems to maximize
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the on-time possibility with the shortest path. Some
advanced GAs were developed on top of the original
GA to solve specific problems. A modified GA was
employed to solve the stochastic control problem on
the networked storage operation area [13].
Though many mathematical optimization researches

have been done, there is not an algorithm that can be
directly used to minimize the transportation cost in PV
recycling. The paper focuses on developing a generic
mathematical optimization framework to facilitate EoL
PV recycling to reduce the transportation cost. Two re-
cycling algorithms were proposed in the framework. A
case study was included to show the efficacy of the
framework.

Materials and methods
A mathematical modeling framework was developed to
generate the optimal distribution scheme by minimizing
the transportation cost. In the framework, three parame-
ters are included: 1) Photovoltaics Installation Site
(PVIS); 2) Photovoltaics Recycling Center (PVRC); and
3) Transportation Company (TC). This is typically a
combinatorial optimization problem: each PVIS can be
taken by any of TC, and sent to any PVRC. As a result,
the optimal distribution scheme is presented by showing
which PVIS is transported by which TC, and goes to
which PVRC. The maximum annual capacities of each
PVRC and TC are constraints to affect the distribution
decision. Besides, the total transportation cost of the op-
timal distribution scheme can be calculated.
Three types of input data are required in the frame-

work. These data are the transportation cost charged by
TC, the distance between each PVIS, each PVRC, and
each TC, and the size of each PVIS and the annual cap-
acity of each PVRC and TC. First, in the cost charge
aspect, the total transportation cost consists of the
overhead charge, the mileage charge, and the weight
charge. The overhead charge ($/trip) is a fixed expense
charged by each trip. The mileage charge is the product
of the unit mileage charge ($/km) and the mileage (km)
travelled. The weight charge is the product of the unit
weight cost ($/kg) and the weight of the material (kg)
transported. The total cost of each transportation ser-
vice is the sum of the overhead charge, the mileage
charge, and the weight charge. The second input is the
distance matrices consisting of a set of distance com-
bination among PVIS, TC, and PVRC. With the latitude
and the longitude of each PVIS, TC, and PVRC, the dis-
tance combination between two of three locations can
be calculated and expressed in matrix forms. The third
input is the size of each PVIS, TC, and PVRC. The
weight of material of each PVIS affects the weight cost.
The annual capacity of each TC and PVRC as a physical
constraint affects the distribution result.
Two types of optimization algorithms were used in the
modeling framework: a static optimization algorithm,
and a dynamic optimization algorithm.
Static optimization algorithm
The static optimization algorithm is a type of the GA. GA
is an algorithm of finding the optimal solution by using a
heuristic, which orders inputs by a seemingly logical way.
In theory, as long as all inputs are ordered in the special
way, the GA makes the same decisions that the optimal
solution does. In practice, the optimal solution obtained
by the GA is most likely a local optimum. However, the
local optimum solution is sometimes very close to the glo-
bal optimum with the reduction of significant amount of
running time.
In the model, all PVIS can be sorted by their sizes from

the largest to the smallest. The explanation is that the lar-
ger PVIS are the ones that would save the most money by
choosing the cheapest transportation option. After sorting
the size of PVIS, the largest PVIS has the first priority to
be recycled by the first TC that offers the cheapest price.
The less size PVIS has, the later that PVIS will be consid-
ered by the GA. As a result, for PVIS with larger sizes, the
cost on transportation of those is minimal. Though the
saving of each PVIS is small, the total saving can accumu-
late by considering some thousands of PVIS. The annual
capacities of PVRC and TC were included in the model as
constraints.
Dynamic optimization algorithm
The dynamic optimization algorithm solves the problem
by using the MILP. Eq. (1) is the objective function to
minimize the total transportation cost. Again, the total
transportation cost is the sum of the overhead charge,
the mileage charge, and the weight charge. Each type of
the charge was described in the previous section. Eq. (2)
is to ensure all installed PVIS are sent as a whole to one
of the PVRC. The linear inequalities in Eq. (3) restrict
that the total weight that each PVRC receives is less than
its maximum capacity. The linear inequalities in Eq. (4)
ensure that the total weight of each TC transports is less
than its maximum transportation capacity. The model it-
erates until it identifies the minimum total transporta-
tion cost.
Minimize

X

i∈I

X

j∈ J

X

k∈K

f½ok � ni þmk � Dki þ Dij þ Djk
� �

�ni þ wk �Wi� � Y ijkg
ð1Þ

Subject to
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X

j∈ J

X

k∈K

Y ijk ¼ 1 ð2Þ

X

i∈I

X

k∈K

WiY ijk ≤C j ð3Þ

X

i∈I

X

j∈ J

W iY ijk ≤Ck ð4Þ

where, subscripts i, j, and k represent PVIS, PVRC, and
TC, respectively. ok, mk, and wk is the overhead charge,
the unit mileage charge, and the unit weight charge that
TC k offeres, respectively. ni is the number of required
trips to transport PVIS i. Dki Dij, and Djkare the trans-
portation distances between corresponding locations.
Wi is the weight of material of PVIS i. Yijk is a binary
decision factor: if PVIS i is transported to PVRC j by
TC k, then Yijk = 1, otherwise, Yijk = 0. Cj and Ck is the
maximum annual recycling capacity of PVRC j and
TC k, respectively.

Experiment
A case study in California is considered to show the effi-
cacy of the proposed framework. The State of California
was selected because of its relatively long history and the
significant amount of PV installations compared to other
states. In the case study, three recycling periods and sev-
eral PVRC locations were assumed based on preliminary
studies. In those studies, three recycling periods were rec-
ommended for recycling the EoL PV between the years
1984 and 2015 based on the amount of EoL PV as well as
the increasing trend in each year. The location as well as
the annual capacity of PVRC in each period was recom-
mended as well: two-2.6 kt annual capacity PVRC in
Period I, and addition 6–8 kt in Period II and Period III,
respectively. The above assumptions were utilized for
implementing the optimization model.
The annual PV installation of California is shown in

Fig. 1. The figure shows the number of PVIS of each
size range, as well as their size percentage among the
total size of each year. Three recycling periods were
divided. The first period has fewer PVIS, as well as a
Fig. 1 Annual PV installations in California (1984–2015)
small amount of kW. The second period is the next.
And the third period has the most PVIS, as well as the
most amount of kW. Another insight of Fig. 1 is the
number of PVIS in each kW range is not proportional
to its total kW percentage. For instance, the size range
of 3–10 kW contains the most PVIS (> 70%) from the
year 2009 to 2012. However, the total kW of that size
range of PVIS is less than 30%. In the opposite, the
number of PVIS in size range of 100–1200 kW seems
negligible. However, they account for about 50% of the
total kW amount. In conclusion, the small size (3–10
kW) PVIS are dominated in the quantity perspective,
but in the overall amount of kW perspective, the pro-
portion of larger size (100–2500 kW) PVIS should not
be negligible.
Considering the gigantic amount of PVIS in California,

the timing of collection should be considered while oper-
ating and managing the recycling process in reality. The
framework assumed all EoL PVIS have been disassembled
and are ready to load on the truck. In addition, the follow-
ing assumptions are made: the maximum load of a truck
is 7.5 t, and the approximate weight of material of every 1
MW capacity PV modules is equivalent to 75 t [14]. With
the above assumptions, each truck can take at most 100
kW PV modules. Considering the significant percentage
(about 40%, in Fig. 1) of PV modules that are over 100
kW, the number of trips cannot be ignored.
Further reasonable assumptions are made to simplify

the optimization process. Due to the gigantic number
of PVIS (up to 160,000 PVIS per year) together with
the combinational delivering options between PVIS,
PVRC, and TC, reasonable simplifications need to
make to satisfy the computational requirement on both
software and hardware. Thus, another two reasonable
assumptions are made. The first is the unit cost charge
similarity assumption. In reality, the cost charge by
each TC tends to be similar due to the competitive
market. Therefore, the unit cost charge of each TC,
such as $/trip, $/km, and $/kg, are assumed to be the
same. The second is the dead mileage charge exemp-
tion assumption. In fact, TC usually do not charge on
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dead mileage. The dead mileage is the mileage gener-
ation when vehicles are driven on the way to or back
from the worksite without taking the real workload. In
the case study, the dead mileage is the mileage when
trucks driving from TC to PVIS, and the mileage when
trucks driving from PVRC to TC. Those dead mileage
charges are reasonable to be exempted in the case study
by considering the reality. With the cost charge similar-
ity assumption and the dead mileage charge exemption
assumption, TC is no longer a variable in the
optimization process. Subsequently, the transportation
cost function can be simplified from Eq. (1) to Eq. (5).
The simplified transportation cost function consists of
the overhead charge, o, the unit mileage charge m, the
unit weight charge, w, the travel distance between the
PVIS and the PVRC, D, the weight of material of the
PVIS, W, and the number of trips, n. By using the sim-
plified cost function, variables in optimization processes
can be reduced by at least 50%.

Transportation cost ¼ o� nþm� D� nþ w�W

ð5Þ
With the simplification, the dynamic optimization al-

gorithm is simplified below.
Minimize
X

i∈I

X

j∈ J

o� ni þm� Dij � ni þ w�Wi
� �� Y ij

� �

ð6Þ
Subject to
X

j∈ J

Y ij ¼ 1 ð7Þ

X

i∈I

W iY ij≤C j ð8Þ

The simplified form can improve the feasibility for
handling large numbers of PVIS and fasten the compu-
tational speed of MILP. In addition, rather than MILP,
Linear Program (LP) is recommended and utilized for
solving the particular California case. It is concluded
that LP is able to handle more variables, compute and
converge much faster, and conduct the total transporta-
tion cost with the error of less than 1% of the total
transportation cost conducted by the MILP.
While performing the optimization, reasonable unit

charges were assumed. The real market price of unit
charges was not used as a main focus in the paper be-
cause those prices vary from time by time. All the
assumed prices were for initiating the process and
showing the efficacy of the PV recycling framework.
Thus, the following unit costs were utilized: the
overhead cost is $10/trip, the unit mileage cost is
$0.06/km, and the unit weight cost is $0.008/kg. The
framework can be employed in any multi-facility re-
cycling problem anywhere as long as the unit cost
rates are available.

Results and discussion
Matlab was utilized as the tool to perform the
optimization for both algorithms. The baseline total
transportation cost, and the optimal total transporta-
tion cost conducted by the GA and the LP are shown
in Fig. 2. The baseline cost indicates the total trans-
portation cost of recycling PVIS by their installed date
without doing any optimization. In that way, each
PVIS is going to the closest PVRC whose maximum
annual capacity has not been reached. The transporta-
tion cost conducted by GA and LP is the optimal cost
as they are generated by optimization processes. The
mechanism of the GA is recycling PVIS from the lar-
gest size to the smallest, while LP processes the
optimization with the objective of minimizing the
overall transportation cost.
Ideally, LP provides the lowest optimal cost, but also

with the most computational expense. The optimal
cost that GA provided is higher than LP, but lower
than the baseline cost. However, in Fig. 2, GA even
costs more than baseline. The discrepancy is due to
the specialty of the size distribution of CA PVIS as
well as the effect of the hypothesis cost structure.
Table 1 shows the combination of transporting the
total 100, 300, and 500 kW PVIS for 100 km. In that,
100 of 1 kW, 10 of 10 kW, and 1 of 100 kW of PVIS
were used for the total 100 kW and the same logic for
the total 300 and 500 kW of PVIS. The cost multiplier
in the last column of Table 1 indicates the higher
number of cost associated with the option of a single
PVIS unit. Table 1 shows that due to the large per-
centage of the overhead cost among the grand total,
the cost of transporting 100 of 1 kW is 22 times more
expensive than transporting 1 of 100 kW, and 8 and 5
times more expensive for the 300 and 500 kW case, re-
spectively. Thus, small size PVIS should be considered
first for saving the most money. In addition, from
Fig. 1, the number of PVIS with the size in between 0
and 10 kW accounts for about 90% of the total. In
conclusion, for recycling PVIS in CA with the current
hypothesis cost structure, having small PVIS recycled
in the cheapest way will maximize the total transpor-
tation cost saving. Therefore, GA should be modified
as sorting the size of PVIS from the smallest to the
largest and assign the cheapest transport option to
smaller PVIS first and is denoted as GA’.
Table 2 shows the transportation cost savings by the

modified GA (GA’) and LP of each year. There are three
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conclusions. First, saving only appears in those years
when the annual capacity of PVRC is relatively tight
compared with the amount of PV that needs to be
recycled (amount of installed PV). The tighter annual
capacity of PVRC, the more saving is expected by
doing optimization. No savings when the annual cap-
acity of PVRC is about two or more times than the
amount of PV that needs to be recycled. Second, the
saving differences between GA’ and LP in each sce-
nario are trivial. However, the computational of LP
could be much longer than GA’, especially when the
number of both PVIS and PVRC increases signifi-
cantly. The computation time of LP for the year 2015
is as high as 3.5 h. Third, the number of PVIS is
another factor that affects the saving. The amount of
installed PV in the year of 2004 is less than that in
2005. However, the saving of the year 2004 is twice
of the that in 2005. This difference is because the
number of PVIS in the year of 2004 is about one
third more than that in 2005 as shown in Fig. 1.
Based on the above conclusion, in the CA case, it is
reasonable to rely on the solution generated by GA’
Table 1 Total cost and multiple of cost of PVIS size and number of

PVIS size
(kW)

Number of
trips

Overhead cost
($)

Mileage cost
($)

Weigh
($)

1 1 10 6 1

10 1 10 6 6

100 1 10 6 60

3 1 10 6 2

30 1 10 6 18

300 3 30 18 180

5 1 10 6 3

50 1 10 6 30

500 5 50 30 300
with a relative accurate solution, a short running time
than LP, without purchasing an optimization solver.
From Table 2, though the saving is as high as

$491,000 in the year 2015, the percentage saving is
only 15%, which is not significant. The reason of the
insignificance results from the category of the charges
in the current cost function. The current cost func-
tion is shown in Eq. (5), and is denoted as Cost
Structure 1. Cost Structure 1 is composed of the
overhead charge, the weight cost, and the mileage
charge. In Cost Structure 1, the overhead charge
($/trip) and the weight cost are not optimized and
remain the same based on the unit cost charge simi-
larity assumption. The weight cost is identical because
the unit weight cost ($/kg) is identical from the unit
cost charge similarity assumption. Therefore, the
mileage charge is the only parameter that determines
the total cost saving. The next step is creating an-
other cost structure, Cost Structure 2, which is only
in terms of the mileage charge as shown in Eq. (9).
The transportation cost in Cost Structure 2 only con-
sists of the unit mileage cost, m, the travel distance,
PVIS combination

t cost Grand total
($)

Number of
PVIS

Total cost
($)

Cost
multiplier

17 100 1660 22x

22 10 220 3x

76 1 76 1

18 100 1780 8x

34 10 340 1x

228 1 228 1

19 100 1900 5x

46 10 460 1x

380 1 380 1



Table 2 Saving of GA’ and LP of each year

Period PVRC recycling capacity
(MW/yr)

Installed
year

Amount of installed
PV (MW)

GA’ saving
(103 $)

LP saving
(103 $)

Computing time ratio
(LP/GA’)

I 70 84–01 19 0 0 11

2002 29 0 0 15

2003 40 0 0 14

2004 63 20 20 15

2005 65 10 10 15

II 700 2006 113 0 0 70

2007 287 2 2 152

2008 346 5 5 148

2009 418 8 9 235

2010 603 44 45 311

III 1300 2011 643 2 2 869

2012 953 26 27 1187

2013 671 3 3 1506

2014 866 20 22 2544

2015 1216 473 491 3731
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D, and the number of trips, n. Assume the unit
mileage cost is $0.2/km.

Transportation cost ¼ m� D� n ð9Þ

Table 3 shows the saving comparison that generated
by different cost structure of each year. From the table,
Table 3 Percentage saving of in each cost structure of each
year. (Unit: %)

Period Installed
year

Cost structure 1 Cost structure 2

GA’ saving LP saving GA’ saving LP saving

I 84–01 0 0 0 0

2002 0 0 0 0

2003 0 0 0 0

2004 9 9 24 25

2005 5 6 16 16

II 2006 0 0 0 0

2007 0 0 2 3

2008 1 1 6 6

2009 1 1 7 8

2010 4 5 25 26

III 2011 0 0 1 1

2012 2 2 15 16

2013 0 0 2 2

2014 1 1 8 8

2015 14 15 51 53
savings turns to be significant, at most 50%, especially
when the annual capacity of PVRC is tight. Therefore,
the transportation optimization is beneficial.
The color-coded distribution decision by GA’ is dis-

played on maps by GIS as shown in Fig. 3. The
installed years 2003, 2008, and 2013 were selected to
represent the installed period I, II, and III, respect-
ively. PVIS were assigned to the closest, non-full
PVRC, represented as each identical color of PVIS
and PVRC.

Conclusions
A generic mathematical framework was constructed to
generate the optimal distribution scheme for trans-
porting EoL PVIS. A static algorithm (GA) and a
dynamic optimization algorithm (LP) were employed
in the framework. The following conclusions were
made from the simulation result based on the PV in-
stalled case in CA. First, based on the size distribution
of PV installed in CA, the focus of the optimization
should be on small PVIS rather than large ones. The
most saving on transportation cost is obtained by opti-
mizing transport distribution on small PVIS. Second,
GA is a reliable algorithm to perform the optimization
on transportation cost with decent accuracy, low com-
putational cost, and no optimization solver required
for the CA case. Third, the transportation cost saving
increases with the annual capacity of PVRC getting
tighter. With the appropriate optimization process and
the specific cost structure applied, the transportation
cost savings can be expected at 53% compared with
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not doing optimization. When the annual recycling
capacity of PVRC is twice or larger than the amount
of the recycled PV demand, there will not be transpor-
tation savings, and thus no optimization is needed.
The developed framework has a wide applicability and
can be applied on any PV recycling case for reducing
the transportation cost.
Authors’ contributions
Both authors read and approved the final manuscript.
Competing interests
The authors declare that they have no competing interests.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
Author details
1Department of Engineering Technologies, Bowling Green State University,
Bowling Green, Ohio 43402, USA. 2Guizhou Kaiyang Chemical Industry Co.,
Ltd, Yongwen 550306, China.

Received: 8 August 2018 Accepted: 26 November 2018
References
1. SPE. Global Market Outlook for Solar Power 2016-2020. Brussels: SolarPower

Europe; 2016.
2. Perea A, Honeyman C, Kann S, Mond A, Shiao MJ, Jones J, et al. U.S. Solar

Market Insight: 2016 Year in Review. Edinburgh and Washington, DC: Wood
Mackenzie, Limited and Solar Energy Industries Association; 2017.

3. Choi JK, Fthenakis V. Design and optimization of photovoltaics recycling
infrastructure. Environ Sci Technol. 2010;44:8678–83.

4. Hosenuzzaman M, Rahim NA, Selvaraj J, Hasanuzzaman M, Malek ABMA, Nahar
A. Global prospects, progress, policies, and environmental impact of solar
photovoltaic power generation. Renew Sust Energ Rev. 2015;41:284–97.

5. Choi JK, Fthenakis V. Crystalline silicon photovoltaic recycling planning:
macro and micro perspectives. J Clean Prod. 2014;66:443–9.



Guo and Guo Sustainable Environment Research            (2019) 29:3 Page 8 of 8
6. Goe M, Gaustad G, Tomaszewski B. System tradeoffs in siting a solar
photovoltaic material recovery infrastructure. J Environ Manag. 2015;160:
154–66.

7. Cucchiella F, D'Adamo I, Rosa P. End-of-life of used photovoltaic modules: a
financial analysis. Renew Sust Energ Rev. 2015;47:552–61.

8. Göllei A, Görbe P, Magyar A. Modeling and optimization of electrical vehicle
batteries in complex clean energy systems. J Clean Prod. 2012;34:138–45.

9. Daskin MS, Snyder LV, Berger RT. Facility location in supply chain design. In:
Langevin A, Riopel D, editors. Logistics systems: design and optimization.
Boston: Springer; 2005. p. 39–65.

10. Akhtar M, Hannan MA, Begum RA, Basri H, Scavino E. Backtracking search
algorithm in CVRP models for efficient solid waste collection and route
optimization. Waste Manag. 2017;61:117–28.

11. Kallel A, Serbaji MM, Zairi M. Using GIS-based tools for the optimization of
solid waste collection and transport: case study of Sfax City, Tunisia. J Eng.
2016;2016:1–7.

12. Demirel E, Demirel N, Gökçen H. A mixed integer linear programming
model to optimize reverse logistics activities of end-of-life vehicles in
Turkey. J Clean Prod. 2016;112:2101–13.

13. Qin JJ, Chow YL, Yang JY, Rajagopal R. Distributed online modified greedy
algorithm for networked storage operation under uncertainty. IEEE T Smart
Grid. 2016;7:1106–18.

14. Choi JK, Fthenakis V. Economic feasibility of recycling photovoltaic modules.
J Ind Ecol. 2010;14:947–64.


	Abstract
	Introduction
	Materials and methods
	Static optimization algorithm
	Dynamic optimization algorithm
	Experiment

	Results and discussion
	Conclusions
	Authors’ contributions
	Competing interests
	Publisher’s Note
	Author details
	References

