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Abstract

Rice husks are resources that should be recycled in a sustainable way, thus creating a win-win relationship between
stakeholders, consumers, and society. Silica is a very valuable material and used for many industrial purposes. A Rice
husk contains 20% of silica by weight, and can therefore be considered a biological silica ore. To recycle rice husks
in a sustainable way, the ash produced from burning rice husks must also be used as a resource. In this study,
based on the concept that rice husk ash should be recycled as silica fertilizer, we compared the economic feasibility
of two recycling systems: Heat recovery from hot water and generation of electricity from hot water. Questionnaires
were also conducted regarding farmers’ expectations of silica fertilizer made from rice husk ash. We found that the
system involving heat recovery from hot water was sustainable; however, generating electricity from hot water was
cost-prohibitive. It must be noted that the validity of this result might be limited to Japan, where electricity
generation is highly regulated. On the other hand, areas that already struggle to dispose of their rice husks should
consider using rice husks to produce energy.
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Introduction
Renewable energy is the key to creating a sustainable so-
ciety. Biomass is one of many sources of renewable en-
ergy. In Japan, since 25 billion m2 of land was covered
by forest in 2017 [1], equivalent to 66% of Japan’s entire
area, forest timber may be considered a suitable form of
renewable energy. However, the long lifespan of trees
seriously draws into question the idea of timber being an
appropriate renewable energy source. Rice husks, on the
other hand, are generated every year and are therefore a
suitable form of renewable energy. On the other hand,
using rice husks for energy comes with a major draw-
back. Rice plants accumulate silica, so that rice husks
and straws are approximately 20 and 5% silica, respect-
ively. This implies that rice plants need silica to grow,
which is why rice plants absorb amorphous silica that is
dissolved in irrigation water. If enough silica is not avail-
able to rice plants, they do not grow well and fail to
stand straight up in paddy fields. This leads to invasion

by insects or causes water from the rice to evaporate
during the growing period; in either case, the plants do
not produce good rice [2, 3]. Rice plants need silica to
grow healthily. The ash content of a rice husk is about
20% by weight, which is extremely high compared to
other biomass such as poplar (1.0%) and cedar (0.2%)
[4]. Approximately 20 tons of ash will remain when 100
tons of rice husk are burned for heat recovery.
Dealing with the large amount of remaining ash is ex-

tremely difficult and stressful for stakeholders. There-
fore, they have preferentially used timber for heat
recovery, with rice husks as their last choice. To use rice
husks as a renewable energy source, it is essential to find
a way to economically recycle the ash generated from
burning rice husks [5]. Rice husks can be sustainably
used as a fuel for energy recovery only when their ash is
used as a resource. The ash is mostly made up of silica,
which, if amorphous, has many industrial applications.
An optimal condition to produce effectively amorphous
silica was investigated in a field-scale furnace [6]. Given
that rice plants in Japan require additional silica to grow
healthily, silica fertilizer must be applied to paddy fields.
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Currently, the fertilizer used in Japan is produced by ma-
terials from other industries. Figure 1 shows the main
sources of silica fertilizers that have been used for rice
production [7, 8]. Slag from the steel industry has mainly
been used for this purpose. The main goal of this research
is to return silica in rice husks to the original paddy field
as a fertilizer, in order to make rice production more en-
vironmentally and economically sound. The purpose of
this study was to evaluate the feasibility of rice production
based on rice husk ash recycling by comparing two
schemes: heat recovery and silica fertilizer production.
The study was based on a questionnaire method.

Rice plants and silica
Rice plants need silica for healthy, continuous growth
[9]. Although it may not be essential [3, 10], a shortage

of silica has a tremendous negative effect on rice plants,
and its presence benefits the plants. Silica provides rice
plants with disease control [2, 10, 11], resistance to
drought [2, 12] and salt [2, 13], and metal toxicity con-
trol [2, 10, 14].
In Japan, the study of the effects of silica on rice plants

began in the late 1930s [15]. The study was conducted
in a hydroponic culture and showed that silica was
needed to improve crop yields and resistance to pest in-
vasion. However, the results were not confirmed in ac-
tual fields because people thought that rice plants would
not face a silica deficit there due to the existing abun-
dance of silica in soil. Since continuous cultivation of
rice is possible in paddy fields but not in dry-fields,
Japan prefers paddy field cultivation for rice because it is
a staple crop for Japanese people. Moreover, Japan is a
small island and has limited areas for rice production.

Fig. 1 Annual production of authorized silica fertilizers
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Fig. 2 The Boiler used in this study [6]
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However, a large volume of irrigation water passes
through paddy fields, which flushes away dissolved silica.
Moreover, silica is reduced in anaerobic conditions in
paddy fields and dissolves into water, where it is also
flushed away. Consequently, silica availability became
low, causing rice plants to sometimes lose condition and

became affected by pests in fall. This phenomenon,
called “the fallen condition in fall,” became the one of
the main topics of agricultural studies in the 1950s,
when the Japanese government wanted to increase rice
production during the era of food shortage that followed
World War II.
The silica taken up by rice plants is amorphous and in

a colloidal state in water. The silica in rice husks is
therefore also amorphous. To use rice husk ash for
fertilizer, it is critical that the silica is in an amorphous
state. It is impossible to distinguish amorphous and crys-
talline silica by visual observation; X-ray diffraction
(XRD) analysis is required. The solubility of silica into 1
N NaOH is a reliable indicator of the state of silica in
the ash [16]. Generally, it can be said that the higher the
percentage of solubility is (more than 50%), the better
quality the silica is. Solubility is also expressed by the
Silica Activity Index [17]. Many studies have been con-
ducted on how to produce better ash, including how to
burn rice husks [18–21]. These studies mainly focused
on combustion temperature. Other studies focused on
energy recovery from rice husk burning concentrating
only on energy production and did not consider the
quality of ash [22–26]. A further study investigated using
different types of incinerators such as fluidized bed, cyc-
lonic furnace, and rotary kiln to burn rice husks [27]. To
make better ash, the formation of carbon black particles
in the ash was investigated with the goal of reducing the
amount of carbon black particles produced [28]. In the
1980s, researchers assessed the growth of crystalline sil-
ica in rice husk ash [29] and the thermal decomposition
characteristics of rice husks [30]. Rice husks have many
industrial applications including insulators [27, 31, 32],

Fig. 3 Distribution of rice plants at each step post-harvest (numbers
shown are approximate actual tons)

Fig. 4 Current usages of rice husks in Japan
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lithium battery anodes [31, 33], fuels [27, 31, 34], cement
and concrete [27, 35], wastewater adsorbents [31, 36,
37], and fertilizer and soil amendment [5, 31].

Materials and methods
Research site
The Local Agriculture Association Imizuno (LAAI) in
City Imizu (approximate population: 90,000) in Toyama
Prefecture, Japan, was chosen for the study. LAAI sells
agricultural products that the members of the associ-
ation grow under a contract, instead of the members
selling their products by themselves. Rice is one of the
products sold by LAAI, so rice from various paddies was
brought to LAAI for milling. LAAI has three milling fa-
cilities: a, b, and c. Facility “a” (LAAIa) was chosen for
conducting this research. The LAAI has been spending a
high tipping fee for rice husk disposal annually and

purchasing silica fertilizers, and spending a high cost for
kerosene use for greenhouse operation. The basic con-
cept in this research was that the recycling of rice husks
would solve those problems.

Questionnaire on use of rice husk ash as silica fertilizer
To understand users’ expectation of silica fertilizer from
rice husks and produce a better silica fertilizer product for
users, several questionnaires were sent to the members of
LAAI. The questions were as follows: what kinds of effects
do you expect silica fertilizer made from rice husks to
have on to rice plants? What factors influence your pur-
chase of a silica fertilizer? What states of fertilizer do you
prefer? What do you expect from silica fertilizer made
from rice husks? How much silica fertilizer would you
apply to 100,000m2? How much would you be willing to

a b

c d

e f

Fig. 5 Results of questionnaire about rice husk silica fertilizers. (a) What kinds of effects do you expect silica fertilizer made from rice husks to
have on to rice plants? (b) What factors influence your purchase of a silica fertilizer? (c) What states of fertilizer do you prefer? (d) What do you
expect from silica fertilizer made from rice husks? (e) How much silica fertilizer would you apply to 100,000 m2? and (f) How much would you be
willing to pay for silica fertilizer made from rice husks for an area of 100,000 m2?
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pay for silica fertilizer made from rice husks for an area of
100,000m2?

Comparing the processes of heat recovery from rice
husks
For energy recovery, two schemes were compared: heat
recovery from hot water and electricity generation. The

comparison was made in scaled-up model based on data
obtained from the current small-scale model.

Measurement and analysis
Furnace
A small-scale furnace, with moving grates and an air
blower system, was used to burn the rice husks as shown

Fig. 6 An X-Ray Diffraction chart of amorphous silica made from rice husks

Fig. 7 Two energy recovery schemes based on rice husks
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in Fig. 2 [38]. The hourly combustion capacity was 100
kg of rice husks.

Determination of amorphous state
XRD analysis was done by Smart Lab (Rigaku) with the
conditions of 9 kW, Cu-Kα, and 2θ: 5–80°.

Results and discussion
Research site
Approximately 1.5 kt of rice husks are annually gener-
ated at LAAI facilities a–c. The water content of these
husks is about 12%. Figure 3 shows the stages of use of
a cultivated rice plant and the product division, by
weight, at each step [39]. According to the figure, the
1.5 kt of rice husks that come from the LAAI facilities
may be the result of over 8 kt of production from the
paddies. In Japan, 2 Mt. of rice husks are generated an-
nually and used for different purposes (Fig. 4). Floor
bedding for domestic animals, compost, and unknown
purposes each account for over 20% of the overall use
of rice husks (over 60% all together). At the LAAI, half
of the annual 1.5 kt is used for floor bedding for do-
mestic animals and materials for underdrain in paddy
fields, but several hundred thousand USD are also
spent to dispose of rice husks. The facility at which this
research was conducted annually generates approximately
0.6 kt of rice husks. Although half of those are used for
other purposes, such as floor bedding and underdrain ma-
terials, those usages are very unstable because the recyc-
ling is to some extent forcibly conducted. Therefore, it
would be ideal to use all 0.6 kt of rice husks for a more
sustainable purpose.

Questionnaire on use of rice husk ash as silica fertilizer
A questionnaire was distributed to the members of the
LAAI. The questionnaire was sent to 94 members; 90 were
returned (collection percentage: 95.7%). The results are
shown in Fig. 5a–f. According to the results, member
farmers expect the silica fertilizer to increase the strength
of the rice plants’ straw, so that the plants will not be easily
bent over by wind (Fig. 5a). Recommendation by a local
agricultural association, price, and distribution history
mostly influence the members’ purchase of silica fertilizer
(Fig. 5b). Pellets were the preferred state of silica fertilizer
(Fig. 5c) because it can easily be handled, which was very
important to the farmers. Powder, on the other hand, was
considered very difficult to handle. Farmers’ expectations of
silica fertilizer made from rice husks were mostly centered
on its beneficial effects for rice plants and its price (Fig. 5d).
The estimated amount of silica fertilizer required for
100,000m2 was 80–100 kg (Fig. 5e). The price that the
farmers could pay for silica fertilizer for 100,000m2 was
30–60 USD (Fig. 5f).

Comparing the processes of heat recovery from rice
husks
The essential condition for heat recovery is that the sil-
ica in rice husk ash must be amorphous. Silica exists in
two phases at ambient temperature and pressure:
amorphous and crystalline. The former is safe, while the
latter is a carcinogen and highly hazardous. Originally,
the silica in rice husks is amorphous. Because rice plants
need silica for healthy growth, they absorb silica from
the irrigation water, which is amorphous and dissolved
in the water in a colloidal state. Figure 6 shows the result
of our XRD analysis. The XRD diagram proves that the
silica in rice husk ash from the furnace was not crystal-
lized, but amorphous. This amorphous state means that
the silica from rice husk ash could be used for other
purposes.
The following operating conditions were utilized. The

annual rice husk generation was 0.6 kt at LAAIa, half of
which is recycled. The current recycling methods, how-
ever, are not stable. We anticipate that the amount of

Table 1 Cost of the ash pelletizing process

Items Annual costs
(USDa)

Notes

Pelletizer 20,000 200,000 USD (10 depreciation yr)− 1

Running cost 12,000 1000 USD month− 1

Maintenance
cost

12,000 1000 USD month− 1

Labor cost 17,500 0.5 person (35,000 USD person−1)

Total 61,500
a1 USD = 100 yen

Table 2 Cost of the boiler in Route 1

Items Annual costs
(USDa)

Notes

Boiler for hot water 25,000 200,000 USD (8 depreciation yr)− 1

Running cost 12,000 1000 USD month− 1

Maintenance cost 9600 800 USD month−1

Labor cost 35,000 One person

Total 81,600
a1 USD = 100 yen

Table 3 Cost of the boiler in Route 2

Items Annual costs (USDa) Notes

Boiler for hot water 25,000 200,000 USD
(8 depreciation years)− 1

Electric generator 5700 80,000 USD
(14 depreciation years)− 1

Running cost 14,400 1200 USD month− 1

Maintenance cost 15,000 1250 USD month− 1

Labor cost 35,000 One person

Total 95,100
a1 USD = 100 yen
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recycling will shrink in the future; therefore, the amount
used for incineration is flexible and can be estimated to be
much larger. Hence, a burning rate of 250 kg h− 1 was set
as the standard burning rate of rice husks. It was also re-
ported that 250 kg h− 1 rate is an economically feasible
capacity [40]. Assuming six working hours per day and
220 d per year, the amount of husks produced overall
would equate to a burning rate of 250 kg h− 1. Because rice
husks have a calorific value of 12.5 MJ kg− 1, normal burn-
ing at 250 kg h− 1 leads to 3.13 GJ h− 1 of energy. Figure 7
shows the process flows from inputting rice husks into the
furnace to the heat recovery stages. The hot water avail-
able after the boiler was either consumed by the green-
house or used to produce electricity for on-site use.
After the rice husks were burned, the ash was gener-

ated. This point is indicated by the number ① in Fig. 7.
The ash generated was approximately 20% of the weight
of the rice husks, or 50 kg h− 1. Solubility is an indicator
of the quality of the silica in rice husk ash [18]. Higher
solubility indicates better quality ash, while lower solu-
bility indicates more crystalline silica. Heat capacity of
3.13 GJ h− 1 was sent to the heat exchanger, which has
63% efficiency according to its operating history. From
there, 1.97 GJ h− 1 of heat was sent to the boiler. From
the boiler, two routes were compared in this study.
In Route 1, hot water produced from the boiler was used

directly for two processes: as a heat source for drying rice
and to distribute heat to greenhouses. Based on kerosene
consumption, which is how heat is currently supplied, the
rice dryer required a heat capacity of 1.08 GJ h− 1, and
each greenhouse required 68MJ h− 1 [5]. The required
heat to dry rice was calculated based on 25 L h− 1 of kero-
sene consumption. The amount for the greenhouse was
obtained using the coefficient of 22.8 KJ h− 1 °C− 1 m− 2,

assuming the presence of curtains or insulators (35.5 KJ
h− 1 °C− 1 m− 2 without curtains or insulators). This coeffi-
cient was derived from the equation described in the pre-
vious report [5]. The heat capacity sent to the
greenhouses after the rice dryer would be 792MJ h− 1,
meaning that 12 greenhouses could be heated.
In Route 2, hot water produced from the boiler was

used to generate electricity. The heat capacity was 1.52
GJ h− 1 with a turbine efficiency of 77%. Assuming a
steam flow and steam pressure of 1500 kg h− 1 and 0.8
MPa, respectively, 50–60 kW of electricity would be gen-
erated. The electricity was consumed by the facility.
To evaluate the sustainability and feasibility of the two

routes (Routes 1 and 2), their operating costs were com-
pared. The two processes both produce ash; using this
ash for silica fertilizer is the basic concept of rice husk
recycling, and according to the results shown in Fig. 5c,
the ash must be pelletized. The cost for pelletizing ash is
shown in Table 1. Expenses for operating the boiler used
in Route 1 are shown in Table 2, while the expenses for
the boiler in Route 2 are in Table 3.
To evaluate the feasibility and sustainability of these

methods, we compared the savings from reducing the
currently energy sources with the cost of the proposed
method. In Route 1, the costs saved would result from
reducing kerosene consumption in the rice drying
process and greenhouses; this is summarized in Table 4.
In Route 2, savings would come from reducing the
amount of electricity that the facility was required to
purchase (Table 5). The advantage of this recycling
scheme is that it allows the ash generated from burning
rice husks to be sold as fertilizer. As shown in Fig. 7,
since the combustion rate was 250 kg h− 1, ash would be
generated at a rate of 50 kg h− 1 (20% of rice husks by

Table 5 Cost savings from reducing electricity consumption in
Route 2

Processes Cost saved (USD) Remarks

For internal
facility use

9438 = 55 kW·6 h d−1

·220 d yr− 1·0.13 USD kWh− 1
55 kW: mean electricity
generation
6 h: rice husk burning dairy
operation
220 d yr− 1: yearly operation
day
0.13 USD kWh− 1

Table 4 Cost savings from reducing kerosene consumption in Route 1

Processes Cost saved (USD) Notes

For rice
drying

61,875 = 25 L h− 1·12.5 h d− 1·220 d yr− 1·$0.9 L− 1 25 L h− 1: kerosene consumption
12.5 h d− 1: dairy operation hours
220 d yr− 1: yearly operation day
0.9 USD L− 1: kerosene price

For
greenhouses

32,076 = 11 L m− 2 yr− 1·3240 m2 ·0.9 L− 1 Heating period: November–March
11 L m− 2 yr− 1: kerosene consumption
3240m2: 12 greenhouses (270m2 house− 1)
0.90 USD L− 1: kerosene price

Table 6 Revenue from the sale of silica fertilizer

Item Income (USD) Remarks

Ash fertilizer
sale

46,200 USD = 50 kg h− 1·6 h d− 1

·220 d yr− 1·0.7 USD kg− 1
50 kg h− 1: effective
silica
6 h d− 1: dairy
operation
220 d yr− 1: yearly
operation
0.7 USD kg− 1: fertilizer
price
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weight would become ash). However, the price of the
fertilizer produced must meet farmers’ expectations. Ac-
cording to Figs. 5e and 4f, farmers expected to use 80–
100 kg of fertilizer for a 10,000m2 paddy field, for which
they would pay $45–60 USD. Therefore, the price of the
silica fertilizer would be set at $0.70 USD kg− 1, which is
80% of the price of the silica fertilizer that is currently
used. The sale of the fertilizer was guaranteed in this
case because farmers were members of the LAAI. Table 6
shows revenue from sale of the fertilizer.
The expenses and savings for Routes 1 and 2 are sum-

marized in Table 7. For Route 1, the profit was negative,
making the system unsustainable. However, a negative
balance can easily become positive if more rice husks
are burned each year, thereby increasing fertilizer sales.
If 350 t yr− 1 were burned, instead of 300, the net profit
becomes −177 USD; however, if 375 or 400 t were
burned annually, the net profit jumps to 2595 and 6845
USD, respectively. Increasing the quantity of husks
burned is feasible, because, as mentioned earlier, other
methods to recycle rice husks – such as mulching and
floor bedding – are not stable pathways. Hence, Route 1
can be evaluated as a sustainable, feasible scheme for re-
cycling rice husks. On the other hand, Route 2 incurred
a net profit of −119,442 USD. This sizable deficit would
be impossible to fill with other income sources. Even if
all 600 t of rice husks were burned to produce silica
fertilizer, the expected income of 84,000 USD would still
result in a 35,442 USD deficit.

Conclusions
In this study, we evaluated physicochemical and economic
feasibility of improving agricultural processes by recycling
rice husks, which contain amorphous silica. Amorphous sil-
ica effectively promotes the healthy growth of rice plants.
We found that using the heat from burning rice husks to
heat water was sustainable and feasible. On the other hand,
burning rice husks to generate electricity was not sustain-
able; its high operational costs and the low sales price of

electricity meant that this pathway was not economically vi-
able. However, we only examined a Japanese case study.
For villages in developing countries without electricity and
with rice as a main agricultural product, generating elec-
tricity by burning rice husks is an excellent option. Sus-
tainability and feasibility evaluations must therefore be
conducted on a place-by-place basis. Rice husks are no
longer waste but are a sustainable resource. Our findings
may mean that rice husk ash is listed as an authorized sil-
ica fertilizer by the Ministry of Agriculture, Forestry and
Fisheries.
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