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Abstract

Metro Manila, Philippines and other urban areas have reached internationally known unacceptable levels of
pollution where about 80% can be attributed to vehicular emissions. The Weather Research and Forecasting model
coupled with Chemistry v.3.6.1 was used in the reanalysis of pollutant concentrations for the year 2013. Initial
results from the planetary boundary layer study suggested that the Yonsei University scheme provides a good
estimate of the atmosphere’s condition; hence, this setting was used for the succeeding simulations. The land
coverage over Sangley point was not properly resolved by the model. This caused a cold bias for the station.
Further evaluation of the model’s sea level pressure output for all sites returned high correlations showing that
modeled values are in phase with the observed time series; however, wind speed values did not correlate well with
the observed values and were all overestimated. The low correlations found were a result of the incapability of the
model to detect the urban canopy layer over Metro Manila. Pollutant concentrations were overestimated. The
pollutant time series suggests that the model overestimates concentration values for PM10, PM2.5, and SO2, while
underestimating NO2 and O3 values. However, it does capture a significant 24-hourly cycle as seen in the time
series’ spectra in the frequency domain. Furthermore, through a student’s t-test, the model also captures a
significant difference in daytime and nighttime concentrations.

Keywords: WRF/Chem, Numerical modeling, Model bias, Planetary boundary layer, Spectral analysis, Pollutant
concentrations

Introduction
Atmospheric models are complex mathematical and
physical tools used for simulating or predicting meteoro-
logical phenomena. Controlled experiments cannot be
performed in the atmosphere wherein a wide variety of
processes occur. As expected, atmospheric scientists
have developed a means of incorporating these processes
in a representation of the atmosphere’s state [1]. A
scientific benchmark for understanding the outcomes of
the universal physical laws is the ability to properly pre-
dict the result of an experiment. In the atmospheric sci-
ences, this translates to the validity of numerical weather
models (NWP) pertaining to their degree of accuracy
and precision in creating forecasts of local, regional, and
global scale meteorological events [2].

In line with this, various parameterizations are avail-
able to the users of atmospheric models that allow for
different physical assumptions. These consider an as-
sumption of an underlying process that cannot be
resolved by the model grids. Some of the significant
parameterizations include the following: cumulus, radi-
ation, microphysics, and planetary boundary layer (PBL)
parameterizations. For instance, cumulus parameteriza-
tions intend to explicitly resolve sub-grid scale clouds
into the model. Similarly, microphysical parameteriza-
tions aim to include the effects of the microphysics in
droplet formation and radiation parameterizations pro-
vide a method for estimating the total radiative flux at a
given grid. One important configuration is that of the
PBL. The PBL consists of the lower part of the atmos-
phere where most meteorological phenomena occur.
This layer is directly influenced by the underlying
surface, and its height is defined by the amount of

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: jacob_garcia@dlsu.edu.ph
1Physics Department, De La Salle University, 1004 Manila, Philippines
Full list of author information is available at the end of the article

Sustainable Environment
Research

Garcia et al. Sustainable Environment Research           (2019) 29:38 
https://doi.org/10.1186/s42834-019-0033-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s42834-019-0033-4&domain=pdf
http://orcid.org/0000-0002-3844-6820
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:jacob_garcia@dlsu.edu.ph


turbulence present in the atmosphere from the bottom
to the top. These turbulent fluxes of scalars such as heat,
moisture, and momentum, allow for the diurnal evolu-
tion of the PBL. Moreover, these fluxes determine the
amount of vertical mixing of boundary-layer variables
due to eddy-transport and must, therefore, be properly
estimated in numerical models [3, 4].
There are various applications of numerical weather

prediction, and one of them is concerned with the esti-
mation of pollutant concentrations and their dispersion
over an area of interest [2]. As stated by the Department
of Environment and Natural Resources - Environmental
Management Bureau (DENR-EMB) [5], atmospheric
pollution is the “alteration of the physical, chemical and
biological properties of the atmosphere, or any discharge
thereto of any liquid, gaseous, or solid substances that
will or is likely to create or to render the air resources of
the country harmful, detrimental, or injurious to public
health, safety or welfare or which will adversely affect
their utilization for domestic, commercial, industrial,
agricultural, recreational, or other legitimate purpose”.
Emission sources vary by type and can be subcategor-

ized as the following: stationary sources, mobile sources,
and area sources. As documented by the European
Environment Agency [6], area sources are a collective
representation of individual stationary emission sources
that are categorized due to their proximity relative to
one another. Conversely, mobile sources are vehicles
that are driven by the combustion of carbon-based fuels
or other fuel types. The recent National Air Quality Sta-
tus Report by the DENR-EMB [5] for the years 2008–
2015 revealed that the majority of emissions stemmed
from mobile sources (88%). Compared to stationary
sources (10%) and area sources (2%), mobile sources
make most of the emissions. As of 2015, there were a
total of 93 monitoring stations across the Philippines
with 27 of these being within Metro Manila. These mon-
itoring stations are subdivided into different types as
shown in Table 1 below.
The air quality monitoring stations present within

Metro Manila obtain data based on the set National
Ambient Air Quality Guideline Values (NAAQGV) for

criteria pollutants. These include TSP, PM10, PM2.5,
SO2, NO2, O2, CO, and Lead, all of which are emitted by
the 3 main sources discussed previously [5]. Due to the
spatial and temporal dependence of these emissions, it is
important that these be documented in a spatial data-
base known as an emissions inventory. With the avail-
ability of emissions inventories, it is possible to locate
emissions hotspots within an area. Table 2 below pre-
sents a summary from a report by Biona et al. [7] show-
ing the major sources of PM, SO2, NO2, and CO.
Atmospheric dispersion models are used in addressing

the potential environmental and health-related risks.
Epidemiological studies [8, 9] found that exposure to
outdoor air pollution such as Particulate Matter (PM)
enhanced the number of chromosome aberrations. The
chemical composition of PM plays a big role in deter-
mining its carcinogenicity. Increased PM levels were
revealed to induce mutations in the DNA of bacteria
samples. This points out the relationship present with
exposure from outdoor air pollution to genetic muta-
tions, and changes in gene expressions; both of which
contribute to an increased risk of cancer. Although the
exact mechanism of action that allows for such an effect
is still under investigation; it does suggest that the
carcinogenicity of PM is linked to the suppression the
DNA repair mechanism and the increase of DNA repli-
cation errors. Consequently, it is of utmost importance
that dispersion models be investigated in terms of its
performance in the reanalysis of surface pollutant con-
centration levels.
In Metro Manila and the surrounding areas, elevated

levels of pollution have been observed; where Public
Utility Jeepneys (20% of the total vehicular fleet) contrib-
ute to 94% of the total soot mass over the study site lo-
cated in Metro Manila [10]. An overview of a scenario of
increased pollutant concentration for PM10 along the De
La Salle University-Environmental Management Bureau
(DLSU-EMB) station site during the northeast monsoon
period from December to February is shown below
through a set of bivariate plots in Figs. 1, 2. These were
plotted using data from the DLSU-EMB station. The
plots show the dependence of a pollutant on wind speed

Table 1 Types of air quality monitoring stations by the DENR

Air quality monitoring station types Quantity

Manual/reference method – PM10 27

Manual/reference method – TSP 22

Continuous monitoring – DOAS (PM10, PM2.5, O3, SO2, NO2, CO, and BTX) 14

Continuous monitoring van – 1 (CH4, O3, SO2, NO2, CO, and PM10) 3

Continuous monitoring – PMS (PM10 and PM2.5) 27

Total number of stations 93

DOAS Differential optical absorption spectroscopy
PMS Particle measuring system
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(radial axis) and direction (polar axis) [11]. A map of the
surrounding area is provided in Fig. 3.
An apparent dependence of high pollutant concentra-

tions with wind speeds of around 4 to 8m s− 1 from the
easterly direction can be noticed. In addition, westerly
wind speeds ranging from 2 to 6 m s− 1 also advect these
pollutants toward the DLSU-EMB site, most likely due
to the formation of a sea-breeze during the mid-day
hours. Moreover, dividing the dataset into hourly inter-
vals captures the daily high emission concentrations for
PM10 due to heavy traffic in Metro Manila. Further
inspection of the subplots pertaining to hours 5 to 9 de-
picts the daily morning rush hour in Metro Manila.
Additionally, it is also interesting to notice that the
subplots during the nighttime hours do not capture the
same emission concentration values. Incoming solar ra-
diation decreases during these hours which hinders the
formation of thermals and transport of pollutants.
These effects can be modeled through numerical

methods with the accessibility to numerous dispersion
modeling systems. Most systems require a precursor
execution of a weather model before the input of

emissions; however, it would be best to incorporate the
effects of gases and aerosols directly into the weather
model to avoid loss of information due to the interrela-
tion of the physical and chemical processes.
The combination of both meteorological and chemical

processes is called coupling. In exchange, this produces
an accurate form of an air pollution dispersion model
where there is less loss of information within the chem-
ical and physical processes that govern the pollutant
species. A fully coupled online model that performs such
calculations is the Weather Research and Forecasting
(WRF) model coupled with Chemistry (WRF/Chem).
Together, the WRF/Chem forms an online coupling of
meteorological and chemical processes. This model is
capable of simulating and predicting pollutant concen-
trations over an area or domain of study with the inte-
gration of various physical, and chemical options [3, 4].
In a study done by Grell et al. [12], the fully coupled

online model was used within the WRF framework. The
model configurations included the use of the transport
scheme (mass and scalar preserving), the grid, and the
physics schemes for sub-grid scale transport. This model
configuration was used to evaluate and compare the
WRF/Chem with the Fifth Generation Penn State/Na-
tional Center for Atmospheric Research Mesoscale
Model with offline chemistry (MM5/chem) along with
photochemical data collected during the summer period
of 2002. Statistical methods used to evaluate collected
data ranged from the Pearson’s correlation factor (r) to
the median error or bias. Data collected in all sites
showed that the correlation coefficients for O3 are
higher for the WRF/Chem model compared with that of

Table 2 Pollutants and major sources

Pollutants Source category with
high shares

Major sources

PM Area, stationary, and
mobile

Cooking and other household
activities; Road traffic

CO Mobile Road traffic

NO2 Mobile Road traffic

SO2 Point Power plant

Fig. 1 Bivariate plot for PM10 (μgm−3)
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the MM5/Chem model. These results show that the
WRF/Chem is proven to be better in comparison to the
MM5/Chem model. With these methods, the WRF/
Chem was seen to have better forecasting skill; however,
the biases of ozone precursor forecasts seemed to be
higher in comparison to that of the MM5/Chem.
Further studies [13, 14] utilized the WRF/Chem for

applications in urban areas. As mentioned in these stud-
ies, urbanization greatly changes the underlying surface
characteristics of an area; thus, also affecting boundary-
layer variables. As a result, these would affect the disper-
sion and transport of pollutant fluxes in the vertical and
horizontal directions.

Zhong et al. [14] discussed the individual and com-
bined impacts of an urban heat island (UHI) case and an
increase in anthropogenic emissions. The relationship
between increased anthropogenic emissions and a
change in land-use was found to affect 2-m temperature
differently. Further investigation showed that the UHI
was found to directly impact 2-m temperature with a
greater degree than the case with an increase in an-
thropogenic emissions. Increased amounts of aerosols
were seen to affect 2-m temperature indirectly through
the radiative effects, which allowed less incoming solar
radiation to reach the ground, thus, affecting 2-m
temperature. The combined effect of both cases proved

Fig. 2 Hourly bivariate plots for PM10 (μgm− 3)

Fig. 3 Map of the surrounding area of the DLSU-EMB station (Red circle)
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that the local effects of a UHI yielded greater changes in
2-m temperature; however, indirect aerosol radiative
effects tend to affect a greater area downwind the UHI.
In a study by Oliveros et al. [13], urbanization was

quantified through changes in surface heat flux (SHF).
The increase in SHF within Metro Manila was mainly
attributed to the increase in heat capacity and decrease
in surface albedo brought about by urbanization. The
effects of the UHI only affected Metro Manila and areas
within 25 km of the urban mega-city.
The WRF/Chem model was used in an unpublished

study over Metro Manila by Ramos in 2015. The climatic
effects of aerosols over the Metro Manila airshed were in-
vestigated in this study. The Morrison 2-moment micro-
physics scheme was used in the simulations. The study
peered into the climatic effects of aerosols and these effects
were quantified with rainfall and temperature from the
model runs. Results showed that the direct effect of aero-
sols decreases the incoming shortwave radiation by 4.6 and
1.42Wm− 2 for December to February and June to August,
respectively. In terms of the indirect effect of aerosols, a
decrease in incoming solar radiation was noted for all
seasons. These affected temperature and rainfall where an
increase of 0.75, and 0.34mmh− 1 were found for the cool-
dry months and the warm-dry seasons respectively.
Minimal studies have been done on pollutant concen-

tration simulations using the WRF/Chem in the
Philippines, and it is important that such a model be in-
vestigated for its applicability over highly urbanized areas
such as Metro Manila [15]. The city is located in a devel-
oping country and is an interesting area to investigate pol-
lutant dispersion due to the high levels of emissions. Also,
Metro Manila is located within the island of Luzon and
poses an interesting area to study the effects of the local
circulation on pollutant dispersion. In addition, the city
has a high population density count; where a great per-
centage of the population is being exposed to harmful pol-
lutants [16]. Thus, the study on air pollution dispersion
modeling is timely and relevant to the Philippine society.
This study used the fully coupled “online” WRF/Chem

model over the area of Metro Manila to simulate PM2.5,
PM10, O3, SO3, and NO2 mass concentrations over the

DLSU-EMB station and compared these with ground
measurements. An optimization of the PBL settings
available to the WRF/Chem was performed to enable its
usage later in the reanalysis of meteorological data. The
emissions database used was taken from the Emissions
Database for Global Atmospheric Research (EDGAR)
and REanalysis of Tropospheric chemical composition
(RETRO) databases. The specific objectives were to (1)
determine the appropriate PBL scheme that allows for
the proper estimation of meteorological variables over
the domain of study, (2) determine the performance of
the model by establishing the correlation between the
predicted and observed values of pollutant concentra-
tions, and (3) investigate consistent differences between
observed and modeled values.

Table 3 Domain configuration

Domains Domain 1 Domain 2 Domain 3

Horizontal resolution 36 km 12 km 4 km

Vertical resolution 51 levels 51 levels 51 levels

Grid points 45 67 52

Domains of integration Latitude
7.53° N- 21.41° N

Latitude
11.05° N - 18.06° N

Latitude
13.62° N - 15.42° N

Longitude
114.03° E-127.97° E

Longitude
117.43° E - 124.5675° E

Longitude
120.02° E - 121.85° E

Table 4 Emissions (mol km− 2 h− 1) by the EDGAR/RETRO
emissions inventory

EDGAR-anthropogenic emissions RETRO-anthropogenic emissions

CH4 Acids

CO2 Alcohols

CO Benzene

N20 C2h2

PM2.5 fossil C2h4

CO C2h6

NMVOC C2h8

OC C4h10

Agriculture emissions C5H12

Energy emissions C6Ch14

Residential emissions Chlorinated hydrocarbons

Transport emissions CO

Industry emissions Esters

Ketenes

Other VOC

Toulene

Trimethylbenzenes

Xylene

CO
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Methodology
The initial process began with a sensitivity analysis. This
was done by varying the configuration of the PBL schemes
within the model. With this, information on the key me-
teorological parameters was compared to determine the
proper PBL scheme for the domain. Through the EDGAR
and RETRO emissions inventories, the WRF/Chem model
was used to simulate the chemical and physical processes
within the domain of interest. The simulation area chosen
is described in Table 3 and a table enumerating the ED-
GAR and RETRO emissions is included in Table 4.
The selected area was used to represent a simulation

of chemical weather for the year 2013. The chosen year
to conduct the simulations was based on the availability
of meteorological data for model evaluation. Further-
more, the period included the enhanced “2013 Habagat”
event that brought high amounts of rainfall in Metro

Manila. Initial and lateral boundary conditions required
for the simulation were processed by the model’s pre-
processing system using the National Centers for Envir-
onmental Prediction Final (NCEP FNL) Operational
Global analysis data and the RETRO and EDGAR emis-
sions inventories.

The modeling system
The WRF model is an atmospheric simulation system that
has a broad range of applications. Several physical param-
eterizations and chemical parameterizations are present
for the reconstruction of PBL processes. Each physical
scheme differs in the manner flux is depicted within its
framework [3]. The WRF/Chem model was released as
part of the WRF modeling package. The model is highly
dependent upon the WRF in making its results in air
quality forecasting, aerosol simulation, and chemistry

Table 5 Model configurations used in WRF/Chem PBL sensitivity simulations and the domain specifications

Shortwave radiation Dudhia scheme

Longwave radiation Rapid radiative transfer model

PBL process Yonsei University Scheme/Mellor-Yamada-Janjic Scheme

Surface layer MM5 surface layer scheme

Land-surface model NOAH land surface model

Cumulus convection Grell-Freitas scheme except on the fine nest

Cloud microphysics WRF single-moment 3-class scheme

Photolysis scheme Madronich F-TUV photolysis

Gas-phase mechanism Regional acid deposition model version 2

Cloud chemistry None (Innermost domain only)

Aerosol module GoCart plus the Madronich F-TUV photolysis scheme

Fig. 4 Difference in mean 2-mr temperature for (left) December, January, February, and (right) June, July, August 2013

Garcia et al. Sustainable Environment Research           (2019) 29:38 Page 6 of 17



consistent with the meteorological components. It is a nu-
merical weather prediction and atmospheric simulation
software that is predominantly used for research and oper-
ational applications. It is similar in structure to the WRF
model; however, additional gridded inputs on emissions

data are to be utilized. The coupled system enables the
WRF model to simulate the transport of various aerosols,
and gaseous pollutants [12].
The model has four major programs that include the

WRF pre-processing system, the WRF-DA, the Advanced

Fig. 5 Surface plots of wind and temperature for the (left) YSU and (right) MYJ schemes

Fig. 6 Diurnal temperature variation for the DLSU-EMB station for the DJF (Winter) period
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Research WRF Solver including Chemistry, and the Post-
processing & Visualization Tools [3].

Description of input data
Meteorological data
Meteorological data were derived from the NCEP FNL
Operational Global Analysis Data in a one by one-
degree grid prepared with a temporal resolution of 6 h.

Geographical input data
The dataset used for land-use and topography was taken
from the United States Geological Survey (USGS) data-
base. The geographical dataset included the physical prop-
erties of the area such as soil category, land-use category,
terrain height, annual mean deep-soil temperature,
monthly vegetation fraction, monthly albedo, slope cat-
egory, albedo, and surface roughness.

Emissions data
Emissions data were taken from the EDGAR and
RETRO databases. These additional gridded datasets
were used to include sources of anthropogenic and bio-
genic emissions within the modeled area. The EDGAR
database has a resolution of 10 × 10 km. It utilizes

nationally reported emissions for CH4, CO, SO2, NOx,
NMVOC, NH3, PM10, PM2.5, BC, and OC. In addition,
chemical species not included, or missing from the ED-
GAR database were taken from the RETRO database.
Table 4 lists the available emissions. There were no bio-
genic emissions included in the simulations.

Observational datasets
Observational datasets were compiled to evaluate the
model’s capability. The DLSU-EMB air quality monitoring
station provided the hourly observed pollutant data for
PM2.5, PM10, O3, SO3, and NO2. Unfortunately, data from
other EMB sites were not available at that moment due to
technicalities. Meteorological data were derived from the
DLSU-Davis weather station along with 6-hourly data
from the Port Area, Sangley Point, Ninoy Aquino Inter-
national Airport, and the Science Garden in Quezon City.
Both the DLSU-EMB station and the DLSU-Davis weather
station are within proximity of each other and will not sig-
nificantly affect the results for model evaluation.

Setup and design
The sensitivity of the WRF/Chem v.3.6.1 to various PBL
schemes was quantified using four basic statistical

Fig. 7 Diurnal temperature variation for the DLSU-EMB station for the JJA (Summer) period

Garcia et al. Sustainable Environment Research           (2019) 29:38 Page 8 of 17



scores, namely bias, mean absolute error (MAE), root
mean squared error (RMSE), and Pearson’s correlation
coefficient (Pearson’s r). The sensitivity experiments
were done for two seasons: the dry-cool season and the
wet-warm season. For both seasons, PBL settings were
varied between the Yonsei University (YSU) and Mellor
Yamada-Janjic (MYJ) schemes. Results from the sensitiv-
ity study were then evaluated to determine the proper
PBL configurations to be used in the estimation of pollu-
tant concentration and transport.

Sensitivity experiments and computation of pollutant
concentrations
The PBL parameterizations influence the simulations of
the wind, turbulence, and other thermodynamic vari-
ables in the lower atmosphere. It is in this area where
many processes that govern transport and dispersion of
pollutants take place [17]. The uncertainty in parameter
estimates arises from the different assumptions on the
transport of mass, moisture, and energy. Consequently,
this may lead to variations in the structure of the PBL
along with the different boundary-layer parameters that
are estimated by the model [18].

This sensitivity study was done to investigate two
PBL schemes and their effect on simulating surface
meteorological variables in the WRF/Chem model.
The two PBL schemes used in the runs were the YSU
and MYJ schemes. According to Yerramilli et al. [17],
the YSU is a modification of the Medium Range
Forecast scheme. It uses an explicit treatment of en-
trainment processes. Moreover, it is a non-local first-
order scheme where vertical transfers are allowed for
all grid levels. The MYJ scheme, on the other hand,
has prognostic equations for the turbulent kinetic en-
ergy (TKE). It utilizes a 2.5 turbulence closure approxi-
mation to determine the eddy transfer coefficients, and it
uses local vertical mixing to treat the PBL parameters.
Since the YSU Scheme does not take TKE into account, it
considers turbulent conditions by assuming an unstable
mixed layer; where the potential temperature is constant.
Moreover, an explicit term is present to treat the effects of
entrainment above the mixed layer [4, 19, 20] This is
shown in Eq. (1) below.

∂c
∂t

¼ ∂
∂z

Kc
∂c
∂z

−γc

� �
− w0c0ð Þh

z
h

� �3
� �

ð1Þ

Fig. 8 Diurnal sea level pressure variation for the DLSU-EMB station for the DJF (Winter) period
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where, C is the set of the prognostic variables u, v, θ, and
q, u is the horizontal direction of wind, v is the vertical
direction of wind, θ is the potential temperature, q is the
specific humidity, Kc is the diffusivity coefficient, z is the
vertical direction, h is the height of the mixed layer, and γc
is the correction factor for the local gradient. The correc-
tion factor assists in the incorporation of large-scale eddy
contributions to the total turbulent flux. The last term
contains ðw0c0 Þh which is the flux at the inversion layer
and is directly responsible for the explicit treatment of
entrainment into the mixed layer.

Model configuration and initialization The model was
configured using a lambert conformal conic projection
having three domains of horizontal resolutions 36, 12, and
4 km centered at 14.58° N and 121.00° E. The grid sizes in
the east-west and north-south directions for each do-
main are presented in Table 3.
A total of 51 vertical levels were considered in the do-

mains. This vertical resolution was to ensure that the ra-
diation calculation was not offset. Terrain, land-use, and
soil data were interpolated to the model grids from the
USGS geographical dataset. The model’s initial and

lateral boundary conditions were initialized using the
NCEP FNL data. Furthermore, anthropogenic emission
sources were derived from the EDGAR/RETRO data-
bases. The emissions were related to the speciation of
the desired chemical mechanism. Finally, these were dis-
aggregated to the model grids.
There are several physical parameterizations available

to represent PBL turbulence, land surface fluxes, micro-
physics, atmospheric radiation, and cumulus convec-
tion. The physical parameterizations used in the model
were the Grell-Freitas scheme for cumulus convection,
the WRF Single-moment 3-Class scheme for the micro-
physics, the NOAH scheme for land surface processes,
and the Rapid Radiative Transfer Model and Dudhia
shortwave radiation scheme for longwave and short-
wave radiation, respectively. As shown in Table 5, no
cumulus convection scheme was used for the innermost
domain. Aside from this, chemical parameterizations
were also included in the configuration. The chemical
parameterizations considered in the model were the Re-
gional Acid Deposition Model Version 2 Chemistry
with GoCart Aerosol along with the Madronich F-TUV
photolysis scheme.

Fig. 9 Diurnal sea level pressure variation for the DLSU-EMB station for the JJA (Summer) period
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Results and discussion
Various physical processes are interactive and play im-
portant roles in the simulation of the lower atmosphere.
Given the many processes involved, the development of
the PBL is paramount to simulating chemical weather.
Thus, it is important to evaluate the model’s perform-
ance first to be able to identify a reasonable PBL setting
that can provide accurate simulations of meteorological
variables.

Mean difference in spatial 2-m temperature
Terrain data was obtained through the USGS database.
Terrain height is an important aspect of numerical
models as it defines the height of the atmosphere above
the ground, therefore affecting the amount of radiation
received at the ground’s surface [4].
Overall, temperatures simulated by all experiments

showed that the YSU scheme produced higher tempera-
tures compared to the MYJ scheme. Figure 4 depicts the
difference in average spatial 2-m temperature. The figure
depicts warmer PBLs simulated by the YSU scheme.
Moreover, Fig. 5 shows two surface plots taken from the
output at a random day within the North-East monsoon
period. A noticeable sea breeze forms during this period

with the YSU scheme as a result of the temperature gra-
dient between Metro Manila and Manila Bay. However,
this is not the case with the MYJ scheme. This is con-
sistent with the results of Hu et al. [21]; where the MYJ
scheme produces a cold bias due to the lack of entrain-
ment of warmer air. Garcia-Diez et al. [22] also show
similar results for the YSU scheme. Cold biases were
seen using the MYJ scheme during the daytime. The
YSU scheme showed better forecast skill compared to
the MYJ scheme, and it simulates warmer PBLs that are
attributed to the scheme’s ability for stronger entrain-
ment processes. The YSU scheme is a non-local scheme.
It contains counter-gradient terms that allow for the rise
of thermals along with an explicit treatment for entrain-
ment allowing the PBL to grow in depth and have higher
simulated temperatures [17, 23, 24].

Temporal evolution of surface meteorological variables
Output taken from model runs was plotted against time
along with observed data from the DLSU-EMB site.

Temperature
Figures 6 and 7 depict the variations in diagnosed 2-m
temperature. The simulated temperature agrees well

Fig. 10 Diurnal wind speed variation for the DLSU-EMB station for the DJF (Winter) period
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with the diurnal variation of the observed counterpart.
However, during the surge of the southwest monsoon
from August 18 to August 26, 2013, the model was not
able to catch the drop in observed temperatures as seen
in Fig. 7 highlighted in green. Other sites also behaved
the same way and did not capture the decrease in tem-
peratures for the same period. Another feature that the
model simulations show is the diurnal pattern of
temperature simulated in Sangley Point. Sangley Point is
not resolved in the model as a land area. Due to this, di-
urnal variations captured are similar to those above
water.
During the surge of the monsoon, the flux of incoming

shortwave radiation was inspected at the surface for the
DLSU-EMB station. Downward flux of shortwave radi-
ation mostly comes from solar energy. Accordingly, the
output, shows that incoming shortwave radiation still
reaches its maximum during these days. The values of
the downward flux of shortwave radiation do not show
any dramatic change during the “2013 Habagat” event.
This then shows that the model might have under-
predicted cloud cover over the station; hence, allowing
solar heating of the surface.

Sea level pressure
Both YSU and MYJ schemes show good diurnal patterns
for sea level pressure as shown in Figs. 8 and 9. For all
other stations, sea level pressure is simulated well. Al-
though the model captures the diurnal wavy pattern of
sea level pressure, it does not capture sudden pressure
changes.

Wind speed
The model over-predicts wind speed for both YSU and
MYJ in all stations. The wind speed as simulated by the
model does not have a significant correlation with the
observed data based on the magnitudes of wind speed
observed. Figures 10 and 11 show a plot of wind speed
at the DLSU-EMB site as compared to the YSU and
MYJ runs. As observed, most simulations overestimated
values for the wind speed. The reason is due to unre-
solved urban canopy or topography.

Statistical analysis for sensitivity runs
Table 6 presents the summary of all metrics averaged
over all sites. All periods with no data from the DLSU-
EMB site were not considered in the calculations of the

Fig. 11 Diurnal wind speed variation for the DLSU-EMB station for the JJA (Summer) period
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metrics. The qualitative descriptions of both schemes of
interest show that the YSU predicts warmer tempera-
tures across the innermost domain for the dry season
(DJF). Simulated diurnal temperatures followed the tem-
poral variations in all stations except at Sangley point –
an unresolved area as seen by the model. With respect
to sea level pressure, all simulations show good perfor-
mances on the daily variations; however, abrupt changes
in pressure are not simulated in the model. On the other
hand, wind speed was overestimated in all locations.
This is possibly due to the inability of the model to cap-
ture the exact urban effect on wind speed.
The mean bias over all sites for the whole 6-month

period presented a warm bias for both the YSU (YSU =
0.35) and the MYJ (MYJ = 0.32) Schemes. This is similar
to the results found in studies that also used the WRF
model [25, 26]. The evaluation of parameter estimations
showed slight overpredictions with a cold bias seen for
Sangley Point. The calculated average MAE scores for
the entire 6-month period over all stations returned a
value of 1.57 and 1.71, for the YSU and MYJ scheme, re-
spectively. The same method was done for the RMSE.
The YSU scheme provided a better score at 1.92 as com-
pared to the MYJ scheme with a score of 2.06. The pre-
vious scores provided for the RMSE included the period
of overestimation from June to August; consequently,
the average RMSE scores over all sites improved upon

its removal from the calculations (YSU = 1.68 and MYJ =
1.95). Upon inspecting the correlation of modeled
values with observed values, Sangley point resulted in
the lowest correlation for both MYJ and YSU. With re-
spect to the average score of correlation over all sites,
the YSU Scheme returned the highest correlation.
Sea level pressure model outputs returned high corre-

lations with observed data as seen in Table 6. The aver-
age correlation coefficients for the DLSU-EMB site
showed that both YSU and MYJ performed well and that
they are both in sync with the variations in daily pres-
sure readings (MYJ = 0.92 and YSU = 0.92).
With regard to wind speed observations, the model

showed over-predictions at all sites, and returned low
correlations for all sites. This implies that the variations
of wind speed over time for all stations are out of phase
with observations. These statistical scores were calcu-
lated using the wind speed only. All stations used for
evaluation are located within a highly urbanized area in
Metro Manila. The flow of wind over such an area al-
lows for turbulent conditions that are not resolved with
the model’s grid spacing. This caused the deviation of
simulated wind speed from the modeled values. In order
to include the effects of urbanization on wind speed,
data on sub-grid scale information such as detailed land
use maps and detailed surface characteristics would need
to be ingested in the model. In relation to this, the

Table 6 Metrics for meteorological parameters for the DLSU-EMB site

YSU: 6Mos Ave. MYJ: 6Mos Ave. YSU_DJF Ave. MYJ_DJF Ave. YSU_JJA Ave. MYJ_JJA Ave.

Surface temperature

BIAS 0 0 0 0 1 1

MAE 2 2 2 1 2 2

RMSE 2 2 2 2 2 2

Pearson-r 0.70 0.72 0.77 0.79 0.64 0.69

Sea level pressure

BIAS 0 0 0 0 0 1

MAE 1 1 1 2 1 1

RMSE 1 2 2 2 1 1

Pearson-r 0.92 0.92 0.86 0.87 0.86 0.87

Wind speed

BIAS 2 2 2 1 3 2

MAE 3 2 2 2 3 3

RMSE 3 3 3 3 4 3

Pearson-r 0.32 0.26 0.35 0.31 0.35 0.28

BIAS : 1
N

P
i¼1

n ð f i−oiÞ ¼
0

f−
0

o

Mean Absolute Error (MAE): 1N
P
i¼1

n
j f i−oi j

Root mean squared error (RMSE):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ð f i−oiÞ2

N

vuut
where fi is the modelled value, Oi is the observed values, and N is the total number of observations
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researchers may apply an urban canopy layer over the
model domains to capture the effects of the highly ur-
banized area. Many studies show that by using an urban
canopy model, simulated urban canopy wind speed may
be calculated based on the underlying characteristics of
land as set by the urban land use dataset. A study done
by Sharma et al. [27] showed that simulated surface
wind speed and temperature were greatly influenced by
the selection of urban parameters and land use in the
configuration of the model. Both wind speed and near-
surface temperature simulations improved.

Analysis of pollutant concentrations for the year 2013
The average bias for all pollutants presented in Table 7.
SO2 and O3 returned the lowest values with an average
value of 3.2 and − 10.0 μgm− 3, respectively. Upon inspect-
ing the variations of these two pollutants, it seems that
SO2 is the most properly simulated with regard to its cyc-
lic pattern. For O3, the cyclic pattern is also seen, but an
underestimation of NO2 could be the source of error in
the simulated O3 fields. In terms of the correlation coeffi-
cient, PM2.5, PM10, and SO2 show the highest correlation.
Other than that, the rest of the pollutant species showed
low values of correlation for the year 2013.
Table 8 shows that nighttime concentrations are over-

estimated compared to the daytime values. A similar
trend between nighttime and daytime values was noticed
by Cheng et al. [28] in a study focusing on the import-
ance of the PBL in simulating air quality. Higher night-
time concentrations are noticed in the model due to the
underestimation of the nocturnal boundary layer. Noc-
turnal boundary layers usually trap pollutants. Upon
comparing the mean bias scores of this division to that
of the entire period, daytime bias is significantly reduced.
This points out the overestimation of nighttime values.
Furthermore, overestimation of nighttime values may
have arisen from the continuous and time-independent
emissions data ingested into the system.
Table 9 presents the results from the t-test conducted.

It presents that the pairs of mean values for the observed
are significantly different from zero. Since this is also
seen in the modeled data, this suggests that the model

simulates significantly different concentrations when one
compares daytime and nighttime values.
The correlation factor accounts for the oscillations of

the values. However, it is not yet clear whether the
model captures certain oscillations that the observed
counterparts have for the other species of pollutants.
To further inspect the model’s performance in simu-

lating the observed oscillations, a spectral analysis was
done to look at the frequency domain of the time series
and look for signals that happen at the same frequency
as that of the observed. These are depicted in Fig. 12.
This test was done only to see whether the modeled data
also peaks at the same frequencies.
Since the values of the modeled data are greatly over-

estimated, the spectrum values for the modeled and ob-
served periodograms may differ greatly. Also, since the
periodogram contains numerous values of the spectra, a

Table 8 Metrics for day/night pollutant concentrations for 2013
for the DLSU-EMB station

Day PM10 PM2.5 O3 SO2 NO2

Mean obs 42 23 99 13 54

Mean mod 85 31 74 11 4

Bias 45 8 −26 −2 −50

MAE 56 18 42 7 50

RMSE 85 29 53 10 61

Pearson-r 0.36 0.39 −0.17 0.4 0.24

Night PM10 PM2.5 O3 SO2 NO2

Mean obs 39 24 63 16 49

Mean mod 157 53 70 23 7

Bias 122 30 6 8 −42

MAE 125 35 25 13 42

RMSE 156 45 30 18 57

Pearson-r 0.17 0.25 −0.2 0.27 −0.06

Table 9 T-test for day/night concentrations for the DLSU-EMB
Station

Day/Night Modeled

PM10 PM2.5 O3 SO2 NO2

t −37.90 −37.03 12.23 −58.20 −44.00

p-value 2.2E-16 2.2E-16 2.2E-16 2.2E-16 2.2E-16

Mean Day 84 31 74 11 4

Mean Night 157 53 70 23 7

Day/Night Observed

PM10 PM2.5 O3 SO2 NO2

t 3.77 4.89 44.94 −8.79 5.86

p-value 1.7E-04 3.7E-04 2.2E-16 2.2E-16 4.7E-09

Mean Day 42 27 98 123 54

Mean Night 39 24 63 15 49

Table 7 Metrics for the year 2013 pollutant concentrations for
the DLSU-EMB station

PM10 PM2.5 O3 SO2 NO2

Mean obs 40 24 81 14 51

Mean mod 121 42 72 17 5

Bias 83 19 −10 3 − 46

MAE 90 26 34 10 46

RMSE 125 38 43 14 59

Pearson-r 0.21 0.29 0.09 0.32 0.03
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smoothing kernel was applied to the raw periodogram to
give importance to the most dominant peaks. The fre-
quencies of interest would be 0.04, 0.08, and 0.125 Hz
which correspond to the daily, 12-hourly, and bi-annual
cycles, respectively.
With respect to PM2.5, the model showed a distinct

power spectrum at the frequency of 0.04 Hz. Although
spectra magnitudes differ, it is apparent that the model
captures the same daily variation of PM2.5 similar to the
observed counterpart. Another peak was also seen in the
observed time series and was traced to a peak at 0.08 Hz.
This peak was seen in the PM2.5 modeled periodogram
but is less pronounced as compared to other peaks in

the spectrum. For both the modeled and the observed
time series, a small peak was seen at frequency 0.125 Hz.
Both the modeled and observed time series presented
the yearly cycle observed at the lowest frequency. In the
time series for both the modeled and the observed SO2

values, two distinct peaks can be noticed. The peak at
the lowest frequency represents the yearly cycle, while
the second peak describes the daily cycle at a frequency
of 0.04 Hz. Also, both contain peaks at the frequencies
of 0.08 and 0.125 Hz but are less pronounced for mod-
eled data. On the other hand, the only distinct peak for
the O3 time series is the yearly cycle, also seen for the
observed. Observed O3 values show a distinct peak at

Fig. 12 Periodogram for selected pollutants
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the frequency of 0.04 and 0.08 Hz, which the modeled
values do not capture. Lastly, for NO2, it was seen that
the model captures a repetitive cycle at the 0.04 Hz fre-
quency. The observed time series also captures this peak,
but it is less pronounced.

Conclusions
This work used the WRF/Chem Version 3.6.1. The YSU
simulates the closest approximation to the observed at-
mosphere. An overview of selected time series showed
that the model simulates temperature properly but is
not able to capture extreme events such as the “Haba-
gat” event during August 2013. Aside from this, the
model’s horizontal grid spacing could not resolve the
area of Sangley Point; hence temperature was not simu-
lated properly in this area. The pollutant time series
suggests that the model overestimates concentration
values for PM10, PM2.5, and SO2 while underestimating
NO2 and O3 values. Although the model has some diffi-
culties in simulating the proper concentration values,
the model does capture a significant 24-h cycle sup-
ported by the inspection of the time series’ spectrum in
the frequency domain. Furthermore, through a student’s
t-test, the model also captures a significant difference in
daytime and nighttime concentrations.
Further investigations may be done with the use of a

high-resolution emissions inventory with temporal de-
pendence. Aside from this, further simulations involving
land use data that includes the urban canopy are encour-
aged to further characterize the surface characteristics
and would probably enhance the simulation of 2-m
temperature and wind speed.
Finally, more areas of comparison for modeled pollu-

tant data would be of great assistance as pollutants do
not only vary temporally but also spatially and it would
validate the modeled data to a better degree.
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